Tensor Learning for Image Processing


Many classical signal processing methods rely on representation and computation in the form of vectors and matrices, where multi-dimensional signal is unfolded into matrix for processing. The multi-linear structure would be lost in such vectorization or matricization, which leads to sub-optimal performance in processing.

In fact, a natural representation for multi-dimensional data is tensor. Avoiding multi-linear data structure loss, tensor computation can bring enhancement of a number of classical data processing techniques. As a typical kind of multi-dimensional data, image could be more efficiently and effectively processed by tensor learning techniques.

This tutorial will first provide a basic coverage of tensor notations, preliminary operations, main tensor decompositions and their properties. Based on them, a series of tensor learning methods are presented, as the multi-linear extensions of classical sparse component analysis, dictionary learning, missing component analysis, principle component analysis, linear regression, non-negative component analysis, subspace cluster, etc. The experimental results for a number of image processing applications are given, such as image reconstruction, image denoising, illumination normalization, background extraction, pose estimation, image fusion, image classification, etc. Finally, some tensor based deep neural networks are discussed for image processing applications.


Yipeng Liu is an associate professor with School of Information and Communication Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China. He received the BSc degree in biomedical engineering and the PhD degree in information and communication engineering from UESTC, Chengdu, China, in 2006 and 2011, respectively. In 2011, he was a research engineer at Huawei Technologies. From 2011 to 2014, he was a research fellow at the University of Leuven, Leuven, Belgium. Since 2014, he has been an associate professor with UESTC, Chengdu, China.

His main research interest is tensor signal processing. He is an IEEE senior member. He has been an associate editor of IEEE Signal Processing Letters and a lead guest editor of Signal Processing: Image Communication.